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A general nonperturbative model for the entire Compton amplitude which incorporates Bjorken scaling,

gauge invariance, and Regge behavior is presented. We show that a covariantly regularized model based on

the infinite-momentum-frame techniques of Drell, Levy, and Yan is equivalent to the manifestly covariant

nonperturbative parton model of Landshoff, Polkinghorne, and Short. We also demonstrate that a general

consequence of composite theories of hadrons with field-theoretic constituents which incorporates the above

properties is the existence of a constant energy-independent and q'-independent term in T,(v, q') (a
"Kronecker delta" 6JO term) and a J = 0 fixed pole in T,(v, q'). Sum rules for general Cornpton

amplitudes are derived and a discussion of mass renormalization for electromagnetic self-energy corrections
of hadrons is presented. We demonstrate that such sum rules are always finite, even in the presence of
Regge behavior, when subtraction terms in the underlying parton-proton u-channel dispersion relation are

taken into account. Analytic continuation in n is thus justified.

INTRODUCTION

Although many models of scaling behavior of the
electromagnetic interactions have been proposed,
the most compelling models continue to be those in
which the hadronic matrix elements of the current
behave as if the carriers of the current are ele-
mentary field-theoretic constituents. In addition
to the general light-cone approach, specific dy-
namical models have been given by Drell, Levy,
and Yan (DLY), ' Landshoff, Polkinghorne, and
Short (LPS),' and Drell and Lee. ' One of the pur-
poses of this paper is to show that a covariant
regularized model based on the infinite-momentum
techniques of DLY is equivalent to the LPS model,
and displays many of the covariant features of the
Bethe-Salpeter bound-state model of Drell and Lee.

One of the great virtues of the LPS model is that
it naturally incorporates analytic Regge behavior
of the scaling function vW, (x), reflecting the had-
ronic Regge behavior of the parton-proton ampli-
tude. In this paper we present a related model,
which is explicitly gauge-invariant, and allows a
complete discussion of the entire Compton ampli-
tude. The importance of Regge subtractions in the
internal representation for the parton-proton am-
plitude is emphasized. The new model is defined
in a linear operational fashion in terms of lowest-

order calculations, and is eminently suitable for
analyzing the interplay of fixed-pole, Regge be-
havior, current-algebra sum rules, and gauge in-
variance. One essential feature of the model is
that all sum rules are automatically finite.

In this paper we also establish in detail the di-
rect connection between scaling in local field theo-
ries and the presence of a polynomial-residual J
=0 "fixed-pole" contribution to the Compton ampli-
tude. The infinite-momentum-frame analysis is
particularly useful for establishing the presence
of this contribution in the case of fermion currents.
The magnitude of the fixed pole is given by a finite
integral over the deep-inelastic structure function
v W, (x)."

The outline of this paper is as follows. In Sec. I
we present an extremely simple derivation of the
LPS nonperturbative covariant model based on
time-ordered perturbation theory in an infinite-
momentum reference frame. The Regge behavior
of the scaling structure function is demonstrated.
In Sec. II perturbation-theory calculations in scalar
and fermion electrodynamics are presented which
are particularly instructive for demonstrating the
close correspondence between Bjorken scaling, J
= 0 fixed-pole behavior, and the requirements of
gauge invariance. The necessity for covariant
regularization is pointed out. Following this prep-
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aration we derive in Sec. III a finite gauge-invari-
ant nonperturbative model, with general Regge be-
havior. A complete discussion and calculation of
the analytic behavior of the Compton amplitude in
this scaling theory is then presented. In Appendix
A, a complete summary of fixed-pole sum rules
for electromagnetic and weak processes is pre-
sented. In Appendix B, a general connection be-
tween the explicitly covariant and infinite-momen-
tum techniques is discussed. Finally, in Appendix
C, a discussion of mass renormalization for elec-
tromagnetic self-energy corrections of hadrons is
presented.

I. THE NONPERTURBATIVE PARTON MODEL

In this section we present a simple derivation of
the Landshoff, Polkinghorne, and Short covariant
parton model, ' based on time-ordered perturbation
theory in an infinite-momentum reference frame. '
The general procedure is to relate the analytic be-
havior of a parton-proton scattering amplitude to
the proton structure function v W, (x). We first de-
rive this relationship in lowest-order perturbation
theory. The generalization to any order in pertur-
bation theory will then be immediate. The term
"parton" refers to the elementary carrier of the
electromagnetic current within the hadrons: At
time t = 0 in the interaction picture, the current is
a superposition of the free currents of these fields.

Thus, first consider the u-channel contribution
to the parton-proton scattering amplitude from
gluon exchange in lowest-order perturbation theory
(see Fig. 1). All particles are taken as scalars.

It will be convenient to use the following Lorentz
reference frame:

3f2
P= P+, 0, ,P,

xP+, k~, xP

where 0&x&1, and we will eventually take P-~.
In terms of the variables k~' and x, we have

u=-(P- k')'

p(M)

FIG. 1. Time-ordered perturbation-theory contribu-
tion to the parton-proton scattering amplitude. The
parton line has mass po.

in agreement with the covariant result since
the contribution of the other time-ordering van-
ishes in order I/P'.

To this same order in perturbation theory, the
proton form factor at q' =0 is (see Sec. II and Ref.
4)

1 = F,(0)g', ' dx(I - x) 1="(2.) " 2. (u .)
~ "."

where Z, is the wave-function renormalization con-
stant in second order. Here the surviving contri-
bution for P- ~ comes from the time ordering
shown in Fig. 2. The two energy denominators are
the same as that appearing in gp.'„.

It is convenient to define a normalized distribu-
tion function f(x):

E,(0) =1= f(x)dx,

with

f(x) = d'k, ",)+Z, O(l —x) .(1-x) m„

In fact, as shown in Sec. II, we can identify the
Bjorken scaling function v W, (x) = xf (x), x =-q'/
2Mv. Note that f(x) has one extra energy denomi-
nator beyond that of the parton-proton amplitude.

We now generalize the parton-proton amplitude
to include the full complexities of a Reggeized had-
ronic amplitude. One can in fact show that if pro-
ton-proton scattering has Regge behavior, then

kg + po 12 2=I +p., —x~- +o —
2x P2

.—'=(r — )(~ x 1-x
(I.2)

Using time-ordered perturbation theory, the
time ordering of Fig. 1 gives

g 1 1

(2m) 2E~ (Eq+E~) —(E~+EI,i+E~)+it

" (2m)' u-z'+is '

FIG. 2. Time-ordered perturbation theory contribution
to the proton elastic form factor. This is the only time-
ordering surviving at P —~ in the reference frame de-
fined in Eqs. QI.2) and (II.5).



3680 BRODSKY, C LOSE „AND GUNION

one cannot avoid having Regge behavior in the par-
ton-proton amplitude. We thus write

(2 ), P( ', Po')dm'
Q —Vl +ZE

—
I subtraction terms j,

where 7tp is the imaginary part of the forward
(anti) parton-proton scattering amplitude. The
spectral-sum variable m' replaces X' of the per-
turbation result. In the case of a Regge contribu-
tion, p ~ (m'), 0 &o. &1, a subtraction term is of
course required in order that the expression for
3g„be finite. As we shall see, the subtraction
term does not enter the calculation of v W, (x) or
the form factor, but it is essential in obtaining
finite results for sum rules. The corresponding
result for f(x) is then

vW, (x)
( )

, (1 —x) p(m', p')
2x (u -m'+ is)'

+ Z, ~(1 —x). (I.8)

Again f(x) has one extra energy denominator be-
yond that of gg;„. In the case of a composite had-
ron, one may take Z2=0, corresponding to the ab-
sence of direct interactions of the photon with the
pl oton.

As indicated in Eq. (I.8), one must in general
take into account the off-shell dependence of the
forward parton-proton amplitude when imbedded in
the interior of a general amplitude. The usual
Feynman off-shell variable p,

2 corresponds in
time-ordered perturbation theory to the invariant
four-momentum squared of the particle computed
taking the energy component from energy conser-
vation (in addition to the usual three-momentum
conservation):

~'(I-x)-m'-k, '-
P P~ xP+

2~,k~xP

, x(1-x)~'-xm'-k, 2

u'=(P-P. ) =
I —x

or

peter model. In any case, it is a natural assump-
tion for the off-shell behavior of a hadronic ampli-
tude.

If we absorb into p(m', p, ') two Feynman prop-
agators, and define

then we obtain

(1.10)

f(x) =— d'y, dm'ImT(m', g'),

f(x)-x ", x-0 (1.12)

arises as a consequence of the hadronic Regge
behavior of the parton-proton amplitude. For in-
stance, if

p(m'„g') =(m') p(g')

one obtains (with g =—xm')

f(x) = —.'x d'u,

with

P(v.')x"' (1 —x) (V'- g.')' '

x(1 —x)M' —g —k i'
1 —x

Thus for small x,

which is directly comparable to the LPS formula„
Eq. (2.25). In our formula, one sums explicitly
over both parton and antiparton„whereas LPS
implicitly include antipartons via a crossed-chan-
nel contribution. An alternate identification of
f(x) in terms of composite wave functions of the
proton defined in the infinite-momentum frame,
and a discussion of the sufficient conditions for the
Drell- Yan threshold theorem, are given in Ref. 5.

The general assumption of convergent off-shell
behavior guarantees that the Bjorken scaling func-
tion vW, (x) =xf(x) comes solely from the "handbag"
or "contiguous" diagrams shown in Fig. 3.

Perhaps the most important feature of the rep-
resentation (I.11) is the natural way in which
scaling-Regge behavior

(u-m ).2 2 X 2

1 —x

In general, this off-shell dependence ensures
strong convergence of the k,' integrations, and
the existence of Bjorken scaling —even in the case
of spin- —,

' theories. The convergence occurs in the
variable k~'/(I —x)—corresponding to the covari-
ant variable p,

'—rather than in k~' alone. In the
Drell and Lee theory the convergence in p.

2 is a
natural consequence of a bound-state Bethe-Sal-

FIG. 3. The "handbag" or "T4" contribution to the
forward Compton amplitude.
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f(x)-x " d'0,

and the integrals are convergent.
Thus, in this model, one includes hadronic inter-

actions to all orders, and electromagnetic interac-
tions to minimal order. In order to show explicitly
how renormalization works and gauge invariance is
satisfied in scaling models, we will present the
results for the Compton amplitude to second order
in g for scalar and covariantly regulated y, spin--,'
electr odynamics. The perturbation- theory calcula-
tions are done using time-ordered perturbation
theory in an infinite-momentum frame since this
provides the clearest treatment of the separation
of the J =0 fixed pole (Kronecker 5) contribution
and its relationship to Bjorken scaling. In Sec. III
we construct a gauge-invariant nonperturbative
model using a specific generalization of the lowest-
order calculations. The derivations again result
in the representation of Eq. (I.11) for f(x), and il-
lustrate the manner in which fixed-pole sum rules
are made convergent in the presence of Regge be-
havior. In Appendix B, we give the direct connec-
tion between the explicitly covariant and infinite-
momentum (or light-cone variable) techniques.

II. COMPTON AMPLITUDE IN PERTURBATION THEORY

As an example of the techniques and utility of
time-ordered perturbation theory (TOPT) and the
infinite-momentum frame' we shall review the il-
lustrative p' field theory (scalar electrodynamics),
where the proton is a composite of charged scalar
and neutral scalar particles. Despite the simplic-
ity of this model, many of the results of the sub-
sequent sections are already exhibited within this
example, especially the scaling behavior of the
virtual Compton amplitude and the presence of a
J'= 0 fixed singularity.

In the last part of this section we show the anal-
ogous results for a field theory in which a spin- —,

'
proton is composed of a spin- —,

' charged particle
and a neutral pseudoscalar (y, vertex coupling).
This example forms a bridge between the scalar
electrodynamics model discussed in detail here
and the y, model of Drell, Levy, and Yan, ' who
concentrated on the scaling behavior of the pg, .
Our work (Sec. III) shows how covariant off-shell
convergence factors required for Bjorken scaling
can be introduced within such models while pre-
serving gauge invariance. Again we shall utilize
the infinite-momentum method, since this tech-
nique conveniently isolates the fixed-pole behavior
of spinor theories.

It should be emphasized that the final results of
the infinite-momentum method are covariant;
time-ordered perturbation theory in the infinite-

momentum frame is a rigorous alternative to the
usual Feynman rules. '

A. Scalar Electrodynamics

We first calculate for later use the second-order
wave- function renormalization constant Z,
= (1 —B) ' =1+B&,~. The methods are essentially
those of Drell, Levy, Yan, ' and Weinberg. ' From
Fig. 4 one obtains

—g 1
(2m)' 2Z,

d'k, d'l, 5'(I, +k, —q)

(11.i)

We parameterize the momenta as follows:

p= P, k, =xP+ki, I,= (1 —x) P —k~,

AI 2+ 2

ki ~ P =0, Ep=P+, (u, , =!x!P+ 2!xlP

k '+z'
(u, =!(1—x)!P+

(II.2)

Then for P- ~,
-g' '~ d'0, x(1-x)
(2m)', 2 D'(k„x) '

where

D(k, x) = 2Px(1 —x)((u, + (u, —Eq)

=k '+xA. '+(1 —x) p,
' —x(1 —x)M' .

(II.3)

(p'I&„(0)lp&= 2„s 2E 2@
I"(g')(p+p')„

I

/

l ~ ) ~ 1

!

p g p !
k& g

FIG. 4. Time-ordered perturbation-theory contri-
bution to wave-function renormalization.

Note that the energy denominator E&- ~&, —e» is
of order (I/P) if the intermediate particles are
moving forward relative to P (i.e., 0 &x&1), and
of order P otherwise. In p' theory there is no pos-
sibility of introducing compensating powers of P
into the numerator (unlike spinor theory), and thus
in the limit P- ~, only the region 0& x&1 contrib-
utes.

The elastic form factor of a spin-0 particle,
F(q'), is defined by
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where

(qp-
) (II.5)

The diagrams which contribute to F(q') through or-
der g' in the scalar exchange interaction are shown
in Fig. 5. Of the six time-ordered contributions to
the order-g' Feynman amplitude, only the contri-
bution of Fig. 5(b) survives for P-~ if we choose
the Lorentz frame such that

where

A = 2P(Ep —(dy —(d) )

-D(k„x)
x(l —x)

A ' = 2P(E~ + E, —&u„—v, )

-D(k~+ (1 —x)q„x)
x(1 —x)

By examining the p. = 0 components we obtain

F(q ) =1+B( )

(II.8)

(For the elastic form factor, 2q P=—2M v = -q '.) In
each of the other diagrams at least one intermedi-
ate particle must be moving backwards by three-
momentum conservation and may be neglected to
order 1/P . Using the parameter isation

k, = xP + (kg + q&),

(k, + q, )'+ p'
(u~ xP+

2 P

1 1 g&P'I&„(0) IP) =2E 2E (2,)3

d'k~dxP(2P)' (2k+q)„
2(gag, 240(, 2GOg AA

Zp X

p+ g

2(2v)'
x(1 —x)

D(ki)D(k~+(I —x)qi)
'

(II.9)

As q~ - 0 (i.e., q '- 0) we see that F(q ') - 1. That
is, L~», the proper vertex contribution at q' =0,
is equal to -B(». This, of course, is a require-
ment of any gauge-invariant theory or, equivalent-
ly, a consequence of the Ward identity. We define
for future use the function f(x), which to order g'
ls

2

f(x)=Z, 5(1 —x)+ (2, d'ki, - (II.10)

so that 1 =F(0) = Jo f(x)dx This is. a special case
of the results quoted in Sec. I. It is clear from the
definition of the variable x that f(x) is the fraction-
al longitudinal momentum distribution function for
the charged particle as seen in the infinite-momen-
tum frame. In fact, by using time-ordered pertur-
bation theory, it is clear that a normalized dis-
tribution function can be defined to any order in
perturbation theory. In general a distribution func-
tion f, (x) can be defined for each type of charged
constituent a within the hadron. Then

(a) F(0) =P ~, dxf. (x) .
a, a

Turning now to the forward virtual Compton am-
plitude (spin averaged) we will calculate T,(q', p)
and T,(q', v), where

CQOv

+ ~
P'OVV

~
O'Vfv (II.11)

(b)

p+q
In the infinite-momentum frame previously defined
IEqs. (II.2) and (11.5)],

(II.12)
FIG. 5. Time-ordered perturbation theory contri-

butions to the elastic form factor corresponding to
Eq. {II.9).

while, if the componets p. , v=i are chosen orthog-
onal to P and q~, then
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T$ j g'f Ty Ty (II.13)

Using the above definition of T, and T, we see that
the Born contributions turn out to be

factor calculation for q~ =0, the only difference be-
ing that the seagull "current" is proportional to
-2g„, rather than x2P. Thus we immediately have

8 MTBorn + 2 TBorn
1 r 2 (2~ )2 4 (11.14)

T seagull 2 f( x ~

x
(II.16)

2

l&m TBorn + TBorn 01 2 22 ~p g
(II.15)

as required by analyticity of T„, in q2.
To second order in g2 the only surviving time-

ordered diagrams contributing to the Compton am-
plitudes in the P- ~ limit are shown in Fig. 6.
Using transverse components, the only contribu-
tions to T, arise from the "seagull" [(e) and (b)] and
"handbag*'[(c)] diagrams. The Born-type contribu-
tions (e) yield Z,x T~~"". The seagull contribution
(b) is calculated in close analogy with the form-

We note that because of this analogy the dependence
on t (of the Compton amplitude) for the seagull
contribution is like that of the form factor. For
diagrams (c), the outside two energy denominators
are equal and proportional to D(k~), whereas the
middle ones are1, (k~ a q~)'+ p,

'
A.'+ k~'

( )
D,' . (II.IV)

Including the contribution of (c) to T, we obtain

Tg(vq q ) =2 Z2+
( )3

2 = dx(1 —x) 2I,'(I —x)
D' ~ [D+x(1—x)(q,' —2&It) —ie]

(II.18)

where k, is the component of k~ perpendicular to
q, and we have defined

D-=D(k, +(1—x)q,), D=D(k, ).

For q'=0, v-0, we can use the identity

4u, '(I —x) „, 2k, '(1 —x)

q I
I I

q

,-t
-Sm

l

1

d'0 (1-x)
D 2 (11.19)

and the Ward identity B&»=-I.&» to verify the
Thomson limit

lim T,(v, 0) =2.
v~p

(11.20) (c)

The integration by parts in k~2 is essential here:
If there had been an arbitrary cutoff in the k~' in-
tegration, then a surface term would be introduced
and the low-energy theorem would fail.

At large energies only the seagull contributions
of Figs. 6(b) and 6(f) survive because of the addi-
tional p-dependent denominator in the handbag dia-
gram. Thus

2(

2

lim T,(v, q') =2 Z, +, „d'0&
v ~oo

dx(1 —x)
g)2 Zp X

TBorn
1 d f(x) (11.21) (e)

This result will be generalized in later sections.
Thus in the (coherent) impulse approximation (v
»binding energy), the Compton amplitude exhibits

FIG. 6. Time-ordered perturbation theory contri-
bution to the forward virtual Compton amplitude for
spin-0 constituents. See Eq. (II.16) through (II.24).
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an ener gy-independent„q '- independent constant
real term in the g„amplitude. In complex J lan-
guage, this is a J =0 Kronecker 5 with t-indepen-
dent energy dependence v'. W'e also note that the
seagull contribution to the general Compton ampli-
tude T„,(v, t, q, ', q, ) is independent of either pro-
ton mass at fixed t. The t dependence of this con-
tribution is similar to that of the elastic form fac-
tor F(t). These features all reflect the locality of
the two-photon seagull interaction, and are con-
sequences of the pointlike nature of the parton cou-
plings.

The result of E(I. (II.21) is entirely analogous to
that obtained for the Compton amplitude in atomic
or nuclear physics for v»BE (but below strong-
interaction thresholds). It corresponds to Thom-
son scattering on the elementary constituents with
effective mass m, ff '=m„, '(I/x). Further discus-
sion may be found in Befs. 4 and 5.

The calculation of the amplitude T, (by examining

T«) proceeds in analogous fashion. The only new
feature is that in the case of Fig. 6(a), one must
perform mass renormalization. The net result for
diagram (a) is

(11.22)

the D term ls the mass-renormalization counterterm. Although the subtracted form is finite, the indi-
vidual terms must be defined using a covariant regularization procedure —e.g. , a Pauli-Villars negative-
metric regulator. This allows us to replace D '-D ' in the mass subtraction term. This will be essential
in obtaining the final forms. The other contributing figures are 6(c), 6(d), and 6(f). Figure 6(c) and the
two diagrams of type (d) give-g', '

d
x'(1 —x)' 2 x(1 —x)

(11.23)

Adding in the Born contributions [ Fig. 6(f)] and using the above replacement for the mass subtraction
term, one obtains after rearrangement

4M 1 g
2M v — 1 -B( ) 2(2w)

'dxx(1 —x) 2 1
D D D

&&
—~, 4M
2(27()'

' x'(1 —x)' 1 1
+V ~ —V.

D,' D D
(II.24)

Of primary concern is the check of gauge invariance:

V2
lim —,' T, +T, —0.

q2 -~0 9
(11.26}

For T, as q,'-0, one has from the first term of E(I. (II.24)

4M v —qi 1 -B(2) 16m

The remainder reduces, using

'dx&1 —xix 1+0( 4) +L T Born q TBom

0 (2)
(II.26)

1 1 ' I2(1 —x)k (I,]', 2(1 —x)'k, 'q, '
(rr. 27)

to

V2 2

T non-Born 8M2 2

q' ' 2(2v)'
x'(1 —x)'2k, 2

~J 3 2 2 2 2 2D'[D2-x (1 —x)'4M v'] (II.28)

Writing T& as T& —T~ '"+T" "~ '" we have (at q
2 —0)

2
Tlloo Bolo((I 2 0 ) 2 g

2(27()'
'dx(1-x) (1-x) k i'(1 —x)

D „D+x(1 —x)(—2Mv) —i~

2(2&)', D'[D' —4M'v'x'(1. —x)'J ' (II.29)
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which explicitly cancels (v'/q')T, "'" "".
Of course, at v- 0 only the Born contribution

survives in T, and T, and the correct Thomson
limit is obtained.

In the limit v-~, q~2 finite, straightforward
algebra yields

'dx
lim vT, (q~', v) =-—T~"" f(x—).

V
(11.30)

-1
»2=2 ~Im»22n'M (D.32)

we have

1 1
vW, (v, qi') dxf (x)x5 x ——

2 P J.
(d (d (d

(II.33)

The results given above in terms of f (x), i.e.,

and

1 1
F(0) = f(x)dx, vW, x=—=xf(x),

0
(II.34)

VT~ =—TFP
1 2 2

In complex-J-plane language this is a fixed pole
with u =0 (vT, - v" '), with residue linear in q'.

Finally we consider the scaling region v, q~2-~
with e = 2M v/q, ' fixed (Bjorken limit). The k~'
integral here is sufficiently convergent such that
the standard limiting procedure is valid. We ob-
tain

1 4M' 2

' Bj 1 —B~,~
2M v —q~'+ ie 2(2w)'

dxx(1 —x) 4M'
X D' (2M v —q, '/x+ is)

(II.31)

so that defining
~a P~Z2 Z2 Tunrenorrnalized ' (11.36)

Thus from Fig. 7(b) we see that f (x) implicitly con-
tains a factor Z,'when expressed in terms of re-
normalized parton-hadron scattering amplitude T„
[see Eq. (I.11)]. Thus Z', or 0 for a scaling theory,
and the parton constituents cannot be composite. '

We now turn to the analogous results for spin--,'
perturbation theory, in which the proton consists
of a spin- —,

' charged particle of mass p, and a neu-
tral pseudoscalar of mass X. We may compute the
I", form factor trivially using the "good" p =0 com-
ponent of the current, and the same choice of Lo-
rentz frame used above [(11.2) and (II.5)]. Then
only one time-ordered diagram contributes and we
obtain as in DLY'

(c) x'r. '5(x ——
) for vtr, (v)

(A., =charge of parton a, all charges to be summed
over}; an effective local operator can clearly be
derived in any case in which the impulse approxi-
mation applies between the times of emission and
absorption of a given constituent, e.g., arbitrary
currents acting at lightlike separation. f (x) gives
the hadronic emission matrix element for each con-
stituent over which the above effective operators
must be integrated, and as such is the unifying
link between a large number of theoretically inter-
esting quantities.

The renormalization procedure may be carried
out to any finite order in perturbation theory in a
straightforward fashion. The explicit occurrences
of the wave-function renormalization factors Z,
and Z,' are shown in Fig. 7, for any of the above
three effective operators. The wave-function re-
normalization of the parton propagating between
the photons cancels for vS'2 in the scaling region. '
We define the renormalized parton-proton scat-
tering amplitude as usual as

'dx
7 Born f (x)x

F,(O) =1 = f (x)dx, (11.37a)

TBorn
1

' v W, (x)dx
X2 (D.s5}

are clearly valid to any finite order in P' perturba-
tion theory. The scaling result only depends upon
the convergence of the 0 ~' integrations. In higher
order we may define f (x) from the infinite-momen-
tum-frame time-ordered perturbation calculation
of the form factor. All the matrix elements of in-
terest are variations on the vertex operator in x
space, i.e.,

(a) xX, for the form factor,

(b) 2A., ' for the fixed pole in T„

(b)

FIG. 7. Renormalization of vertex operators in the
parton model. The occurrence of wave-function renor-
malization factors Z2 and ~Z2 are represented by full
and half circles, respectively.
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where

g' d'kix(1 —x)([k,'+(p —xM)']/x)
2(2g)' D'(k ~, x)

(II.37b)

The denominator factor D(k~, x) is defined as be-
fore. The numerator bracket is the factor
2(p p, —Mv), which comes from the spin-averaged
pseudoscalar coupling. When divergent, the dk~'
integration will be temporarily defined in this and
all subsequent formulas of this section by means
of simple covariant regularization —either by a
spectral condition on the mass A,

' or specifically
Pauli-Villars negative-metric subtraction in this
mass. In the nonperturbative model discussed in
Sec. III, this unphysical but gauge-invariant reg-
ularization is replaced by the assumption of strong
off- shell convergence in the parton-proton scatter-
ing amplitude.

For the purpose of gauge invariance checks we
will only need to calculate T, for q'=0 and arbi-
trary v. In Fig. 7 we show the contributing graphs
to T„(v, 0) in order g' and the corresponding time-
ordered graphs which survive in the limit P -~.
Here i refers to any component perpendicular to
the 0 and P directions. Because of the Gordon
identity, a graph in which a photon is attached to
an external leg will not contribute unless it also
connects to a backward-moving spinor. As first
emphasized by DLY, intermediate states with
backward-moving fermions can contribute in the
P- ~ limit, since the numerator algebra can com-
pensate for the two powers of P of the "bad" de-
nominators. [A method for automatically including
the contribution of Z graphs is given in Ref. V.

Here it is useful to exhibit them explicitly. ] The
complete result for T,(v, 0) is

1g(v 0) —
(2 )p

dx ——(2)——(2)
x 2 2(1 —x)k, '

D+ D+ D D+

D'D, ~D, D' ~ DD, (II.38)

where

D+ ——D(k~, x) + 2M vx(1 —x) (II.39)

thus obtain

lim T,(v, q') = T,"*"
~

dx....„r'f(x)
0 X

(II.41)

ki'+(p, —xM)'
x (II.40)

The terms in the curly brackets for T, correspond
to the contributions of (S,), (2)(V,), (2)(V,), (H, ),
(H, ), (H, ), (H, +H, ), respectively, as shown in
Fig. 8.

As in the P' case, integration by parts in k~'
is crucial in ascertaining that

lim T,(v, 0) =2,
V ~m

the Thomson limit. For v- ~, only the Z con-
tribution H, survives. This is true as well for
q'40, since the numerator traces do not depend
on v, but only on q~; it is thus not possible to
compensate for the denominators which increase
with v. It is this feature which makes time-or-
dered perturbation theory so useful for extracting
the energy-independent contribution to T, . We

Note that Z-graph H, takes the place of the sea-
gull contribution of scalar electrodynamics. Be-
cause of the effective local coupling of both the Z-
graph and the seagull contributions, this energy-
independent contribution to the virtual Compton
amplitude T„„(q,', q, ', v, t) is independent of either
photon mass q, ', q,

' at fixed t. Experimental
implications of this remarkable behavior have been
discussed in Ref. 4.

We will now calculate the T, amplitude for all
v and q'. It is easiest to evaluate T, by examining
the p. =O, v=0 component of T&„since the re-
sulting currents cannot reverse the direction of a
fermion line —the "good" current rule of DLY.'
Thus only the time-ordered diagrams shown in
Fig. 8 contribute. The contributing terms in the
amplitude must be proportj. onal to P', which re-
sults in a considerable simplification of the al-
gebra. The result is

gT,(q, v) =2(2„),
((q

' —2M v)(1 —x) +Z' —(M —g)' )P —(M —p)'
D+JJ

dx
DH+

( )
[S (1 — )+k q (1 — )] '(1- )'S

(11.42)
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...„4m2
T, ""= +(v- —v) .

H+

(II.43)

Feynman

TI(~, Oj

Time-Ordered
Contributions

I

I

SI

Tp (v, q )
Time-Ordered

Contributions
I I I

I ~tg I

I I . a I

I
—Sm

I I I

S2

where

H+ =2&v- q~'+is,

D,' =D(k~+(1 —x)q~, x)+(q~' —2Mv)x(1 —x) —ie,

The terms in the curly brackets for T, in (II.42)
correspond to (S,), (5m: S,), (V,), (H,), respective-
ly, as shown in Fig. 8.

Upon regularization, the 5m subtraction for S3
in fact cancels the S, contribution. As in the P' cal-
culation, this is made explicit by the ability to
shift the k~ integration in S3. After some algebra,
one verifies the threshold constraint

2

lim T,(q', v)+—,T,(q', v) =0,
q2 ~o

and the Thomson limit. The J= 0 fixed pole agrees
with Eq. (II.35), with f(x) defined from Eq. (II.37).
Finally, the Bjorken scaling limit is

VI

I —Sm
I

'

Sp

I I I

Vg

lim
v ~ , & = 2&v/ q & fixed

As stated before, these results in terms of f(x)
are more general than these specific perturbation-
theory examples. When summed to all orders in
perturbation theory, the fixed-pole sum rule may
formally diverge at x-o due to Regge behavior
f(x)-x ",0&o. &1, but in actual fact, subtraction
terms automatically arise which keep the sum
rule finite. The mechanism for this and a full
treatment of a nonperturbative model are given in
Sec. III.

V2

I I

I -+-

I

I

Hp

I

I

Hg

I I I

I

Hp

I

Hg

I

ri I

HI

FIG. 8. Time-ordered perturbation theory contribution
to the forward Compton amplitudes in the case of spin-~
constituents. The first column shows the total covariant
Feynman amplitude. The corresponding time-orderings
for T&(&, 0) and T2(v, q ) surviving at P ~ are shown in
the second and third columns, respectively. [See Eqs.
(lL.38) and gI.42).] The Z-graph contribution H3, the
origin of the J =0 fixed singularity, reduces to a seagull-
like contribution [see Fig. 6(b)] at P

III. A FINITE GAUGE-INVARIANT

NONPERTURBATJVE MODEL

In this section we consider a simple nonpertur-
bative parton model for electromagnetic processes
which has the following features:

(a) It is gauge-invariant by construction.
(b) It is explicitly covariant.
(c) It contains the off-shell suppression required

to obtain scaling for deep-inelastic e-p scattering.
(d) It contains a proper treatment of Regge be-

havior in the parton model including the crucial
role of subtraction terms.

(e) It yields a polynomial-residue fixed pole
whose magnitude is given by a finite integral over
the vW, (x) deep-inelastic structure function.

Further„ the model can be generalized for any
of the spin-dependent or spin-independent sum
rules (see Appendix A). It can be employed as a
theoretical laboratory for checking results based
on light-cone dominance or parton-model intui-
tion.

This model can be regarded as a gauge-invari-
ant extension of the Landshoff-Polkinghorne-Short
nonperturbative model. ' The results can also be
obtained from an infinite-momentum-frame OFPT
(old-fashioned perturbation theory) approach, with
covariant re gularization.

The basic starting point for our model is a rep-
resentation of the parton-proton forward scattering
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amplitude, Fig. 9(a), which is assumed to have
the normal analytic features of a hadronic ampli-
tude.

We write the off-shell forward amplitude as
[p,'=(p —k)', u=k'; see Fig. 9(a)]

The subtraction term, which only contributes to
the real part of T, is necessary to ensure con-
vergence of the representation (III.1), and will be
crucial in the derivation of finite sum rules; it is
required for that part of T which has Regge be-
havior

T(u, p, ') =- dm'dp p(m', p) ps(m', p)
/L —P Q- +26 -Tg

(III.1)
(III.3)

It should be noted that the dP and dm' integration
contours can be taken as complex in the unphysical
region. The general complex singularity structure
indicated by perturbation theory for the parton-
proton amplitude may then be accounted for if the
contour integration is suitably defined. ' An al-
ternative method for treating the k' dependence is
given in Appendix B.

Note that the total antiparton-proton cross sec-
tion is proportional to p.'

o.—,(s) ~ p(s, m, ')

In order to obtain the "softened" behavior nec-
essary to derive scaling we take T to have off-
shell damping in the variable p.'. We thus assume
that at least the first moment in P of pNR(m', P) and
pR(p) vanishes. Such behavior is not unnatural, for a
hadronic amplitude„and it is a natural consequence
of bound-state models for the target proton. '

The form (111.1) leads naturally to the following
representation for the self-energy of the proton
due to the emission and absorption of a parton
[in general, one sums over all types of partons;
see Fig. 9(b)]:

d'u 1 p(m, P) pR(m „p)Z(P) =+ dm'dP
i (p —k) —m. (p —k) —P u —m +is -m2 2

We can generalize this further by using the gener-
al KKllen-Lehmann representation for the parton
propagator: I (I+8

1

(p —k)'-m, '+ is
1do, . p(o) .(p- k)' —o+ie (Proper)

Then

d'k/i p(m' p, ') p'(m' p')"
( p —k)' —z, k' —m'+ ie = T. (i+B)

with

dI=
( ~ dm (gdop(v)2w' 0 y

(III.7)

where we have used a Feynman parameter to com-
bine the denominators

p
—k

(Proper)

/4

P P = I (I+B

(a) (b) (Proper)

FIG. 9. (a) The forward parton-proton amplitude.
(b) The corresponding contribution to the proton self-
energy.

FIG. 10. Gauge-invariant nonperturbative model for
the vertex and Compton amplitudes.
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1 1
(p-u}'-o (p-a)'- p [(p- u}'- z,]' '

(ill. 3)

Note that the resulting nonperturbative theory is
defined ln a linear operational way on second-
order perturbation theory results. Since we are
starting with a, finite expression for Z(p), the sub-
sequent formulas we derive will all be well de-
fined.

Starting from Z(p) we can use the Ward-Takaha-
shi identities to derive gauge-invariant expres-
si.ons for the form factor and the full Compton am-
plitude:

z(p+q) —z(p) =-q"I'„(p+q, p),

&, (p+q, p) —&, (p, p q) =-q'-T,

In each case this yields the proper amplitude. The
full vertex and the full Cornpton amplitude illus-

trated in Fig. 10 also include the improper contri-
butions. The case of a composite proton is
I(1+B)= 0, which eliminates the Born-like dia-
grams. This procedure yields the nontrivial,
minimal gauge-invariant currents (i.e., terms
which are not explicitly transverse). The results
for the p term are thus identical to those obtained
from the effective spectral sum of contributions
corresponding to the elementary self-energy, ver-
tex, and Compton diagrams of the usual Feynman
perturbation theory. In the present case, the line
carrying momentum p"- k" is the only charged
line. In the case of multiple charge, one applies
the Ward identities to a basic self-energy diagram
in which the external momentum is routed in pro-
portion to the fraction of charge carried by that
line. Thus, in the form-factor calculation, one
sums the individual parton and antiparton contri-
butions weighted by the parton charge.

Using Eq. (III.6) for Z(p) we obtain for the one-
photon vertex

d k (2p+ q —2u)" p pR

2 [(p+ q —l2) —Z ] [(p —0) —Z ] Q —m -m (III.10a}

l I
= I (d'u/f ) dz

2(1 —x)(2xp+q[1 —2z(1 —x)] j" (1 —2z)q"pR
a'(x, z) " m'iP(0, z)

(Ill. 10b)

where

D(x, z) =~„"—xm' —(1 —x)Z, +»'x(I —x) +2wx(I —x}+q'z(1 —x)[1—z(1 —x)]+jg (III.11)

k„'= k —(1 —x)p —z(1 —x)q . (III.12)

Since we are considering the on-shell vertex, t —= p q=-q'/2. The odd terms in y' have been discarded in
the numerator of (III.10b).

Since the denominators D(0, z) and D(x, z) are symmetric under z-1 —z (for p=-q2/2), the Regge sub
traction term in (III.10) vanishes and the numerator vector in the surviving term is x(2p+ q) . The stabil-
ity condition M(m+2, is assumed. The form factor is thus

E(q') = -v'I dz dx
x(1- x)p

[xm'+ (1 —x)Z, —x(l —x)»' —q'(1 —x)'z(1 —z)]
'

We define the normalized distribution function f(x) via

(III.13)

dxf(x), (III.14a)

where

f(x) =--~'I-, x(1 —x)p
xm'+ (1 —x)Z, —x(1 —x)»'

For the Regge part of the spectral function p, we have

(III.14b)

2

fR( )
(1 —x)'x(m')"

dm
[ 2 (1 ) (1 )»2]2 . (III.15)

For x-o, the last integral is proportional to

x(m')" I
QHI [xm'+Z„]' x" ' (111.16)
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Thus

f(x)- Q y„x " (x-0),
1&(X)0

where we have defined

(III.17)

(III.18)
dg f"

m=1
(~ z )P ~

and I is the (P, g, y) integral operator defined from the first line of (111.15).
As we shall see below, the structure function vW, (x) is given by xf(x). The Regge behavior of f(x),

which follows from the Hegge behavior of the parton-proton total cross section, does not disturb the con-
vergence of the x integration for I'(q'). In the more general case of multiple internal charges, it is pos-
sible for the distribution function f,(x) for an individual parton to have Pomeron behavior. However, even-
charge-conjugation contributions such as the Pomeron cancel in the summation over parton-antiparton
types for the form factor

E(0) = g x,f.(x)dx . (III.19)

The form factor does not receive any contribution from the Regge subtraction in Z(p).
Using the second Ward-Takahashi identity for the forward Compton amplitude

-q "T„.= [I'„(u+q, f ) &,(P, P)-] + [I",(P, f) I'v(f P —q)], — (III.20)

we obtain the "uncrossed" diagram and half the "seagull" contribution from the first bracket of (III.20):

(,)
d'k p p" I (2P+ q —2k) "(2p+ q —2k)' g„,k'- m' m' ][(P+q- k)'- Z,][(P—k)' —Z,]' [(p- k)'- Z,]' (III.2 la)

= r (d'k/i) y~2xp+ q[l —2z(1 —x)] -2k'] "(2xp+ q[1 —2z(l —x)] —2k'] "6(l —&)(I —x) p

0 0 D x, z

[q(l —2z) —2k'] "[q(1—2z) —2k'] '2(1 —z)p" g»2(I —x)p gv p"
D'(0, ~)m' D'(x, 0) IP(0, 0)m'

(III.2 lb)

In each term k„ is chosen to diagonalize the denominator D, defined in Eq. (III.11). The remaining contri-
bution T@~~„ is obtained from the substitution q -q, p- —v.

As usual we define T, and T, from Eq. (II.ll). The structure function W, (v, q') =(2mlVf) 'ImT, (v, q') is ob-
tained in the scaling region from the proper contribution T„'„alone, and may be isolated from the p„p, co-
efficient in Eq. (III.21b). Thus

4 2 1 1
lim —W, (v, q') =lim —I dx dz x'(1- x)'(1 —z)pv
V i o 3f B] 2F p p

-2 p/q =QJ flXCd

xim(2vzx(1 —x)+ q'z(1 —x)[1—z(1 —x)] —xm2 —(1 —x)Z, +x(1—x)M'+ie] ' (III.22a)

x'(1 —x)2 v6(2 vx(1 —x) + q'(1 —x))p= -m' lim I dx xm'+(I- x)z - x(I - x)~' (III.22b)

=xf(x) ~„. =, /2, . (III.22c)

The surviving term in the Bjorken limit is obtained by integrating Eq. (III.22a) once by parts in z. Only the
surface term at z =0 contributes for v- ~. The existence of the scaling limit is guaranteed by the "soften-
ing" conditions on the spectral functions. Again, the Regge subtraction term does not contribute.

The invariant amplitude T,(v, q') may be isolated from the coefficient of the g„, terms which only occur
in the proper part of the Compton amplitude. We obtain (after angular averaging in k')

T, (v, q') =I (d'k/i) 6(1 —x)(1 —x) pk' 2(1 —g)p k' 2(1 —x)p pR

D'(x, x) m'D'(0, ) xD'(x, 0) m'D'(0, 0) ~

(111.2S)
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At this point we can check the low-energy theorem

lim T,(v, 0) =(2)Iw'
v~Q

(1-x)'p-(1 —x)p
2

'd f( )[xm'+ (1 —x)Z, —x(1 —x)M']
(111.24)

which is the correct Thomson limit for the covariant normalization used here. A more complicated proof
can be derived for the case of multiple charges.

We next investigate the high-energy limit of T,(q', v) at fixed q'. From Eq. (III.23) we have

2(1-z)(l- x)'p 2(1-z)p" (1-x) p pR (III.25)

where

(III.26)d(x, z) = xm'+ (1 —x)Z, —x(l —x)M' —2 vzx(1 —x) —q 'z(1 —x)(1—z(l —x))

and I is the same as without the d/dZ, differentiation. We have grouped together uncrossed-diagram
contributions and the seagull-diagram contributions (z =0 terms). The d(0, 0) term (which arises from the
seagull Regge subtraction) may be rewritten as

-(2)~'I, = -2~'IpR ,- "
pRdx

m'Z, , xm'+Z, )' '

Thus the contribution to T,(v, q') from the seagull diagrams [second parenthesis of Eq. (III.25)] is
Oo 1

T,""""(v,q') =2 —f(x) =2 f(x) — —g —y
Q x Q x Q(ot& g

(111.27)

(111.28)

where

f(x) = e(1 —x)f(x) —w I = 0(1 —x)f(x) —Q y x ",
xm'+ Z,)'

(III.29)

with y„as defined in Eq. (III.17). Thus the seagull diagrams yield a finite energy-independent, q -indepen-
dent contribution to the T, amplitudes. Note that the subtraction term is crucial for the finiteness of the
seagull contribution in the presence of Regge behavior. For q'=0„ the effects of the subtraction term ac-
tually cancel out in ihe total contribution for T,(v, q'). An even simpler derivation of the 6«sum rule for
T,(v, 0) can then be given. See Ref. 4.

The remaining contribution to T, from the uncrossed and crossed graphs has normal Regge behavior.
The presence of the pR subtraction terms for these contributions is crucial for obtaining a finite result.
The Regge terms only arise from the pR contribution and the leading behavior at x- 0: We have

2

dP dv dm'p(o)g p (P)(m')" dz dy 2(1 —z) dx
277) C Q Q

(III.30)

where (with g =xm'),

dm'(m')"[ ] ~ dm'(m')"
~~Q Q

&(I - x)
[xm'+Z, —2vzx- q'z(1 —z)]' [xm'+Z, —q'z(1 —z)]'

(III.31), x"" [g+Z, -2vzx- q'z(l-z)]' [g+Z, -q'z(I-z)]'

Using integration by parts on g, the surface terms vanish (for 0 &n &1) and Eq. (III.31) becomes
" dx 8(1—x) 1

, x " [g+Z, —2vzx- q'z(1 —z) —ie] [g+Z, —q'z(l —z) —ie]

For p large we scale

, [Z, + g —q'z(1- z)]x=x'
2 vz

(III.32)

(111.33)
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and obtain

T,(v, q') = TR(v, q')+ TP""",

where

2 2

T,'= —, dPdo Q p„(P)p(o)2r'
Q

dy dz 2(1 —z)
gO!

~ Ig+g 2 (1 }]el+1( } htx

(III.34a)

(III.34b)

"dx'(x')' "
=-1—e ™& (III.34c)

2~2
TPP( 2

)Q' ~v
f( )d„

0&O!&1

is the correct signature factor for a crossing-even
amplitude. This result for T, shows the scaling
behavior of the Regge term in the variable &u =-2 v/
q', which arises from the z -1/q' region. In the
case of our spinless example, q'T, scales in ~.
This illustrates the general point that the handbag
diagram contains Regge v" terms which vanish in
the scaling region.

The subtraction terms, which are crucial for the
finiteness of T„are not evident from the approach
of Landshoff et al. ,' but arise from a consistent
gauge-invariant finite treatment of the electro-
magnetic amplitudes. These terms do not contrib-
ute to the form factors F(t) or W„which arise
from currents proportional to the external momen-
tum p", since the subtraction terms which involve
d(x, z) with x=0 correspond to contributions in
which the external momenta do not flow through
the charged line. The Feynman variable x appear-
ing in the above equations may be identified with
the fraction of the momentum carried by the
charged particle in the infinite-momentum frame
of the proton.

As is evident from the perturbation-theory ex-
ample given in Sec. II, the result (111.28) for the
q'-independent v-independent 4 =0 Kronecker 6
term in the T, amplitude holds as well for the case
of spin- —,

' charged particles. " This result for T,„
which we first presented in Ref. 4, is a compelling
feature of the scaling parton model. We can also
derive a result for the J=0 fixed pole in T,(v, q')„
first given by Cornwal1, , Corrigan, and Norton, "
who used a scaling Deser-Gilbert-Sudarshan
(DGS) repre sentation.

We shall show below that

fixed pole whose residue is polynomial in q' (as
conjectured by Cheng and Tung" ), plus the as-
sumption of scale independence.

The derivation of the fixed pole in T2 is in many
ways more difficult than the derivation for the T,
amplitude; for example, in the model described
above„one must be certain to include the improper
(proton-pole) diagrams shown in Fig. 10, as re-
quired by gauge invariance. In particular„ the
finiteness of the x integration for the fixed pole in
T2 requires inclusion of these contributions. In a
true bound-state model the pole diagrams do not
appear; in this case the T ' diagrams (i.e., those
which involve the connected six-point hadronic am-
plitude} are required to restore the full gauge in-
variance of the theory, and are necessary to obtain
the correct result for the J=0 fixed pole in the T2
amplitude.

There are also other methods available for con-
structing gauge-invariant amplitudes in composite
models. For example, Scott" has used a ladder-
approximation Bethe-Salpeter approach to con-
struct, at least asymptotically, a gauge-invariant
expression for exclusive electroproduction ampli-
tudes at large transverse momentum. In the work
of Drell and Lee, ' the counterterms required for
gauge invariance in inclusive electroproduction are
constructed by demanding that the soft-photon the-
orems be satisfied in a minimal way. This method
is used in Ref. 14 for constructing completely
gauge- invariant exclusive electroproduction and
Compton amplitudes in bound-state models. In any
case, the subtraction terms required by Ward
identities are present.

We first calculate an expansion for the self-ener-
gy terms in Fig. 10:

[&(P+q) —&(P)] I, '=v 2

Thus, using (III.35), we see that
2

(q v) = Ti~
M q

(III.35)

(111.36)

d'k$ p pR

k —I +Le —m (P+q —k) —Z

(p- k)'-Z,

This result is equivalent to the assumption of a (III.37)
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where

=(2v+q')1m'
1

I (x, z}

h(x, z) = xm'+ (1 —x)Z, -x(1 —x)M'

—(2 v+ q')zx(1 —x) .
The vertex required in Fig. 10 is obtained from

Eqs. (III.9) and (III.20). Again, the Regge subtrac-
tion term does not contribute. We thus obtain from
the P„p„/M' coefficient

The pR term vanishes upon a shift of the (finite) k"
integration. We then have

[&(P+q) —&(P)]1,2=v 2

1 1= I v' dx(1 —x)
( 1)

—
( 0)

Im I)

I

I

I

I

I

I

I

I

l

I

I

c

Oo l

T,(v, q') =m'm'I dx dz a(x, z)+(v--v),
0 0

(III.39)

where

a(x, z) = 8(l- x)p
4x'(1 —x)'(1 —z)

Xp

Sx(l —x)
(2v+q')d(x, z)

FIG. 11. Contour for the Mellin inversion formula,
Eq. @II.44).

the three terms arising from the proper, vertex,
and self-mass contributions, respectively.

It turns out to be convenient to isolate the leading
p behavior of T, using the Mellin transform tech-
nique. The contribution of the first term of B(x,z}
to the Mellin transform of T,

4x{1—x)
(2 v+ q ')h(x, z) .' (III.40)

is

d(»)(»)' '&.(v, q') (»0) (111.41.)

2"Mf '"""-"(1)-' 'd 4x'(1 —x)'(1 —z)pI'(3), , [xm'+ Z,(1 —x) —x(l —x)M' —q'z(1 —x)(1 —z(1 —x)}]' ~ [zx(1 —x)]~ '

(III.42)

To isolate the J = 0 fixed-pole contribution we add and subtract the leading ~- 0 integrand

4x'(1 —z)pR
[xm'+Z, —q'z(1 —z)]' ~[zx]~

'

Using the Mellin inversion formula

(III.43)

d&&(&)(2v) ', (III.44)

one may isolate the leading v dependence by picking up the nearest 8-plane singularity of E(8) to the right
of the inversion contour C (see Fig. 11).

For the difference term the x integration is strongly convergent so that the leading p dependence is ob-
tained from the pole at g =2 arising from a z integration of the form

dz 1
2

(111.45)

[Note that when the cross term (v- —v) is included, the resulting signature factor (- 1) "cancels the con-
tribution of the 8=1 pole. ] Expanding the denominator in powers of z gives
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2"~f-( 1)-''"""-" 'd. '
r(3)

x [4x'(I - x)'p (-I) (& - 3)q'(I- x)
I x (1 —x)~ [xm'+2;(I —x) —x(l —x)M']' [xm'+Z, (1 —x) —x(1 —x)M']' ""

(-1) (~-3)q'
x"', [xm'+Z, ]'-" [xm'+Z, ]'-"~

I
(III.46)

so that the residue of the pole at 8=2 gives a contribution to T,:

(2v)', ] [xm'+ Z, (1 —x) —x(1 —x) M'] [xm'+ Z, (1 —x) —x(1 —x)M']'

(111.47)

The corresponding calculation for the vertex and self-mass terms in B(x,z) precisely cancels the q'-inde-
pendent terms in (111.47). The contribution of the remainder to the J=0 fixed pole is thus

2q' ' (1 —x)p pRv', [xm'+ Z, (1 —x) —x(1 —x)I'] [xm'+ Z, ]
(111.48)

The final contribution to the J=0 fixed pole of T, is obtained from adding back in the Regge term (III.43).
Exhibiting the m' dependence from

pR =g p.(P)(m')", (111.49)

we have (with xm' = g)

, r(S)r(3-8)
r(3)

dx dm'4(1 —z)(m')"
x' ' [xm'+Z, -q'z(1-z)]' '(z)"

2,~, r(8)r(3 —&)

r(3) 2 —8 —n , [g+Z, —q'z(1- z)]'-'(z) ' (III.50)

For the moment we will concentrate on the contribution of this term to the J=O fixed pole. The required
pole at 8=2 arises from the z' terms in the z integration; specifically for Q -2 we have

, r(8)r (3 —8)
r(3) 2 —g —n 2 —g

4q'(3-8) '

vo

z+, (K+z,)'
dg g" + 2 . (III.51)

As before, the q'-independent term is canceled by similar contributions from the vertex and self-energy
amplitudes. The linear q' term gives the fixed-pole contribution

v', [xm'+Z, ] ' (III.52)

which, combined with (111.48), is precisely Eq. (III.35).
Clearly T, also has terms v" ' with Hegge behavior arising from the explicit poles at 4=2 —e in Eq.

(III.50), as well as in the contributions of the vertex and self-energy amplitudes. We will verify that the
Regge contributions of Eq. (III.50) are in fact "scaling Regge" contributions (vT, -~ '). The vertex and
self-energy contributions vanish in the scaling limit.

For q' large, one may take z =-z/q' and drop the z ' term in the denominator of (III.50). One then ob-
tains

, r(8)r(3 —0)
r(3) 2 —4- n

dz(-q')"' 'j"
[g+ z, +z]'

, r(8)r(3 —8) 1 .. . I (n+1)r(2-8 —n) 1 r(1-8)r (1- n)
r(3) 2- 8- n r(3-8) [Z,] ' I'(2 —8 —n) (III.53a)

2 2 7r A 'F I —Q'-p cV I s's (S — ) sis s S —ii —s ( Z, ) (III.53b)
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which has exactly the q' dependence appropriate to
scaling Regge behavior. Including the cross graph,
the signature factor is [(-1)' "+1].

For n- 1, i.e.„Pomeranchukon behavior, one
obtains a finite contribution vT2-~', since the
numerator zeros from (a) the signature factor and
(b) the spectral contribution

lim I, „-(o.- 1)IInZ,
1

n-i- (III.54)

are compensated by the denominator zeros: (a)
sinn(2 —o.) from the z -0 integration and (b) sinmn.

This agrees with the proof of Landshoff and
Polkinghorne" showing the survival of the Pomer-
anchukon contribution due to its coincidence with
the fixed pole at J=1.

IV. CONCLUSION

where

=2 —,vW, (x) -g —y„, (IV.1)
dx 1

p

and

vW (x) P y„x'
~p 0!

v W (x) =—v W (x) —g y x'

(IV.2)

(IV.3)

The sum rule for T, =' was first derived by Corn-
wall, Corrigan, and Norton. " The sum rule for
T, ' was derived for arbitrary parton spin in Ref.

. ,6 gp4. More recently, the 2 y result has been derived
from the light-cone approach by Bander" and
Frishman. " In addition „other authors" have con-

In this paper we have presented a general non-
perturbative model for the Compton amplitude
which incorporates Bjorken scaling, gauge invari-
anee„and Regge behavior. In the case of the deep-
inelastic electron scattering, the results agree
with the Landshoff-Polkinghorne-Short' model
and exhibit scaling Regge behavior. We have also
given a particularly simple derivation of the LPS
results for v W2 using a covariantly-regularized
infinite-momentum frame analysis.

As we have shown, a general consequence of
composite theories of the hadrons„with field-theo-
retic constituents, which incorporate (a) Bjorken
scaling (and thus "softened" off-shell behavior)
and (b) gauge invariance, is the existence of a con-
stant energy-independent q'-independent term in
T,(v, q') (a Kronecker 5: 5z, term) and a 8 =0 fixed-
pole term in T,(v, q'). Contributions can be ex-
pressed in terms of vW, (x) as follows:

2

firmed our parton-model results. The extension
to the nonforward Compton amplitude is given in
Ref. 4. Applications to neutrino scattering and
polarization measurements are discussed in Ref.
18 and Appendix A.

Notice that if the leading term in v W, (x) at x-0
has n &0, then„by integration, the right-hand side
of the sum rule (IV.1) reduces correctly to

2 —,v W, (x) (n &0),dx
(IV.4)

which is the result obtained directly in the parton
model if there is no leading Regge behavior. Since
(IV.l) and (IV.4) coincide for all He(n)&0, the re-
sult (IV. l) must be the unique analytic continuation
of (IV.4) to positive o. . The derivation given in
Sec. III shows that this continuation in n is justi-
fied: The result (IV.1) is obtained automatically
for a. &1 when subtraction terms in the underlying
parton-proton u-channel dispersion relation are
taken into account. In general, all sum rules which
are formally divergent at x -0 due to leading Regge
behavior may be rendered finite by analytic con-
tinuation in this manner. Further examples are
given in Appendixes A and C and Ref. 18.

All of the derivations of the specific forms of the
sum rule [Eq. (111.28)j assume normal Regge be-
havior of the underlying hadronie parton-proton
forward scattering amplitude. In principle, it is
possible that this amplitude could have a J=—0
Regge contribution at t-0. In this case, the por-
tion of the Compton amplitude with J-0 Regge be-
havior would be more complicated than that given
in Eq. (III.28)." Nevertheless, the existence of an
energy-independent photon mass-independent (at
fixed f ) contribution to the full Compton amplitude
w'hich derives from the elementary electromag-
netic interactions is not affected. Since the 8-plane
position of the accidentally coincident Regge con-
tribution is expected to depend on t, the funda-
mental terms, with energy dependence independent
of t, can be isolated by direct measurements of
the real part of the nonforward Compton ampli-
tude. '

Physically, the q' independence of the 5« term
in T,(q', v) is a direct consequence of the local
space-time coincidence of the two current inter-
actions. This is immediately apparent from the
seagull contribution of the spin-0 currents, and is
made explicit by the Z-graph contribution in the
case of spin--,' currents. Such terms have dramatic
and testable experimental consequences in Bethe-
Heitler interference experiments and the 2y anni-
hilation processes measurable in e'e collisions. '

Finally, there is the important question of how
these parton field-theoretic calculations ean be of
physical interest despite the fact that the elemen-
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tary constituents are not seen in the final state.
From one point of view, this model for the electro-
magnetic interactions of composite hadrons can be
viewed as a theoretical laboratory which allows
one to abstract the most fundamental features of
local current interactions (including light-cone
properties) without regard to the exact composition
of the final state. Alternatively, if the physical
deep-binding picture of Johnson and Drell2' is
relevant, then the calculations presented here
could be valid when the free-particle states of the
model are a good match to the near continuum
closely-spaced levels of a bound-state model.

Note that in the case of the real part of the Comp-
ton amplitude, constituent production is not in-
volved. In fact, if one believes in the existence of
an elementary fundamental current within the had-
ron that is relevant to the calculation of elastic
and inelastic form factors, then it is difficult to
avoid the possibility of having two photons interact
on the same current line. Thus inevitably one has
contributions to virtual amplitudes„e. g. , the real
parts of Ty and T„ from local two-photon interac-
tions, and the conclusions stated above must apply.
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APPENDIX A: FIXED POLES IN WEAK
AND SPIN- DEPENDENT

ELECTROMAGNETIC AMPLITUDES

In general„one expects all parton-model ampli-
tudes with two or more currents to have fixed-pole
behavior. Physically, the large four-momentum
q" of the current is routed through the parton
propagator in Fig. 3, rather than the supporting
strongly-convergent parton-hadron scattering am-
plitude. The physical current scattering ampli-
tude T"' thus reflects the elementary fixed-pole
dependence of the parton-Born amplitudes. In this
appendix we will give the parton theory fixed-poles
for both neutrino inelastic scattering" and spin-
dependent electroproduct ion."

The spin-averaged virtual weak current scatter-
ing amplitude (with absorptive parts correspond-
ing to the inelastic neutrino structure functions)
ha.s the form

qpqu T „O'qq u„'O'qqv T2 ~v~vo i, p aT quqv T (Pgqu+Puqg)
v gp v

q
2 $ Kp

q
2 Kv

q
2 ~2 2 ~2 3 ~ 2 4

2 ~2 5

p .g quq; (&uq +& qu)-
4 (Al)

The T;(q', P q) are the kinematic-singularity-free
amplitudes related to T; by

T;=T; (i=1, 2, 3), T, =T,+, T", ,q'

the infinite-momentum method of Sec. II or the
explicitly covariant method of Appendix B. The
identification of terms of the same order in P then
yields

M T, (P'q)
4 4 q2 q2 2'

(A2)

&q,
———'Tr[(tt'+ns) yq(1 —y, ) (P + g+m) y, (1 —y, )]

= 2 [k„(k + q), + k, (k + q) „-g~, k (k + q)

The numerator of the contributing spin-averaged
parton amplitude is

T, =2xP. q

T =4x'M'

T3 = —4xM'

T =04

T, =4xM

' f(x) 1
x 2&P q+ q2 +iE

(A4)

—i e„,~,(k+q)~k'] . (A3)

The parton momentum k" can be computed using

plus an equal contribution with t) q- —p. q, p- v

obta, ined from the crossed amplitude.
Note that we have approximated the parton prop-

a.gator

1 I
(0+ q)' -m'+ze xjM'+2P q —[(k~+q~)'+m'] /x —(k~'+A. ')/(1 —x))+ie 2xP q+ q'+is

The leading fixed-pole behavior of the five invariant amplitudes is thus
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TFP
1

@pp 2(q'+a)M'
(p q)'

pp @pp 4M
3 p~q

TFP 04

) x ji dx -Qy„—f(x) 1

0 X ~ Q

(A6)

Let us assume the proton has positive helicity.
Choosing the reference frame as in Sec. II, we
can take the helicity vector s as

Ms('~=- —P 0 P+
M

p~ oO ~ (A10)

then s P=0, s'= —1, s q=P q/M. The positive or
negative spin vector for the on-mass-shell parton
can be written as

In the case of T„ the direct and crossed ampli-
tudes cancel in leading order; thus terms of order
a/v', where a is a model-dependent constant, can
arise from corrections to the approximation (A5)
as well as nonleading "T "diagrams. In some
cases one can show that a, and hence

TFP TFP P a TFP
5 5 q2 2

—4aM2

(P q)q" (A7)

as well as T~~, vanishes, if, for example, a Ward
identity for the weak current is satisfied, or if
g-graph contributions can be neglected at P- ~,
as in composite models. This is discussed further
in Ref. 22. As in the derivation of T,

' for the elec-
tromagnetic currents given in Sec. III, such a re-
sult depends on the cancellation of contributions
from T~ and T~'~ diagrams.

As usual, the fixed-pole sum rules (A6) and (A7)
must be summed over the types of parton constit-
uents. The subtraction terms required for con-
vergence in the case by Regge behavior can be ob-
tained explicitly using the method of Sec. III or
the analytic continuation method in the Conclusion.
From Eq. (A4), we also obtain the scaling results
(v=P q/M x= —q'/2M, )

m'+w~'
N)~ = k XP~ Wg~ XP +

2Xp (A11)

(1+y.g )(

= (h, —h ) zm e„,p, q P u)+ + ~ ~ ~ . (A12)

Matching this to T„„we obtain

G" =02 (A13)

and (taking lj, =0, v=1)

4gFP
= lim

M p q
dx[f, (x) —f (x)J

X
2xP' g+g +zE —2xP' g+ tg +gQ

then zv'= —t. , and zo k =0 if w~ kj =0, wj'=k~'.
In general the parton-proton scattering amplitude

has helicity-conserving and helicity-nonconserving
contributions. Let us define k, (h ) to be the am-
plitude for the emission of a positive- (negative-)
helicity parton from the positive helicity proton.
The numerator of the contribution (uncrossed} par-
ton amplitude is then

W, =, —W, =xf(x), —W, =-f(x),

—W, =o, —W, =f(x),
(A8)

or

(A14)

and thus vtV5= vW4=0.
Let us return to the electromagnetic case and

examine the spin-dependent structure functions.
Assuming the initial and final proton spin states
are the same, we define

p
P o'0

p
O'll

g s'G, (P qs'-s qP'}G,

/van@

0 M2 M4

~ gFP
M2 1

f, (x) f (x)--
0 X CV Q0'.

Gt

(A15)

where f, (x) is obtained from integrating h, over
d'k~ and f(x) = —,'[f+(x) +f (x)]. Since the amplitude
G, (v, q') has leading behavior v" ', the fixed-pole
contribution is a Kronecker-(5 singularity at J=0.
The corresponding scaling structure function is

4p q
( ) f,(x)-f (x) —q'

( )

with s2 = - 1, s p = 0.
(A9) The results (A15) and (A16) are to be summed over

parton types weighted by square of the charge.
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APPENDIX 8

In this appendix we give a direct, general con-
nection between the explicitly covariant and infi-
nite-momentum (or light-cone variable) tech-
niques. "

For illustration consider the covariant expres-
sion for the full vertex function shown in the first
diagram of Fig. 10. For the spin-0 case we have

I "=(2P+q)"F(q')

d'k/z (2k+ q)"m(k', (k+ q)', u, t)
(2ll) [k —p.o +zc] [(k+q) —p, a +ze]

where It; is the full off-shell parton-proton ampli-
tude with u=(P —k)' and t=q'. As usual we write
a M-channel dispersion relation

1 Im JR(k', (k+q)', m', t) dm'

7T LC —I + 'LE2

modulo possible subtraction terms. We can pa-
rameterize the four-momenta as follows:

M' M'
P= P+

P 9' P'9'
2P ~ qi~ 2P

0' = —q~

2 p2 k +kxP+ L k xP
4xP ' ' 4xP

Notice that all invariants are independent of the
parameter P= —,

'
(P, +P,). Unlike the infinite-mo-

mentum calculation, P need not be large. For ex-
ample, in the target rest frame, P=M/2; in gen-
era.l ln(2P/M) is the rapidity of P,.

The four degrees of freedom in k" are thus re-
placed by

r' r'
F(q') =

where

1 1 d, ' Im37i, (k', (k+ q}',m', t) i„„z
ll (2zl)' 2x(1 —x) [M' —S] [M' —S]

(B6)

S(k 2
)

J. Vo J.
x 1 —x

S= S(ki + (1 —x) ji, x),
and at the pole u=m'

k' —y,,' = x[M' —SJ,
(k + q)' —p,,' = x [M' —S] .

(B8)

APPENDIX C: MASS SHIFTS IN THE PARTON MODEL

This result reproduces the infinite-momentum
TOPT results of Secs. I and II. The resulting ex-
pression for f(x) is the I PS formula (I.11). Erlua-
tion (B6) is a further generalization of the model-
covariant calculations for F(q') given in Eq.
(111.13).

This method for relating covariant and infinite-
momentum-frame calculations has general applica-
bility; inclusion of spin factors is trivial. Notice
that since P =-,' (P, +P,) is an arbitrary parameter,
we can, as usual, interpret the "light-cone" vari-
able x=(ko+k, )/2P as the fractional longitudinal
momentum of the charged constituent in the frame
in which P, becomes infinite. As we have stressed,
any integrated result which diverges formally at
x -0 due to Regge behavior 1m K-(m')" will be
rendered finite when the subtraction terms in Eq.
(B2) are considered; the final result can equiva. —

lently be obtained from analytic continuation in n.

d'k/i 1 „, " dx dk'
(2a}' ' --2lxl — 2' '

The great merit of this parameterization (BS}is
the simple factorization of the k' integration. For
the calculation of I'", all the singularities in the
k' plane necessarily lie in the lower half plane,
except for the pole arising from

zz -lll +ze =(1 —x) M — — +z6 .2 k +k~' zg +k~'
x 1 —x

(B6)

Thus if (1 —x)/x is negative, the k' integration
gives zero. On the other hand, for 0 (x(1, we
can close the contour in the upper half plane and
obtain

M5M
P

Mg 5M~

x,P

i.e.,

f, (x)
0 x (Cl)

which is the result obtained by Weisberger. ' In
fact, Eq. (C1) is undefined if vW, (x) has Regge
behavior, and a more careful derivation must be
given. For the case of scalar fields, the inter-
action energy density due to the mass shift

&r =Q &4 ~Ma'4a (C2)

The lowest-order shift in energy due to a change
in the parton masses M, can be obtained immedi-
ately in the parton model:
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is similar in operator structure to the electromag-
netic seagull term

% = —P e.'A.'(x)y.(x)&'(x) .

Thus we can use the analysis of Sec. III to show
that the Regge subtraction terms necessary for
the parton-proton amplitude representation lead
to a subtracted form for the mass shift

d 5M, (C4)

where

K, =+/5M/ (c7)

and we again obtain (Cl). Note that if 5M, ' =e, '/
e' 5M,', as is the case for the electromagnetic
mass shifts of the partons, then we obtain

Fp
2= T1- 2

~Ma =
~Sofa Mo

1
(C8)

for the shift of the bound-state mass M due to elec-
tromagnetic mass shifts of the constituents and

T," in the J =0 fixed pole (Kronecker delta:5«)
which can be obtained from Eq. (III.28). More gen-
erally we can obtain the mass shift due to other
interactions (e.g., from the A.-d'quark mass dif-

f, (x) =f, (x) 8(1—x) -P x "y„-0for x-0 (C5)
(I&0

as in Eq. (III.28). The proof for spin-~ fields is
similar: In this case we note the similarity of the
Z-graph (effectively local) contributions of the
P- ~ analysis

~, af'r~&or;0& &~
x,P

to the mass-shift interaction

ferences) and obtain the tadpole-model results for
masses squared. These results also agree with
the results obtained by Jaffe and Llewellyn Smith. "
If the partons are isosinglets and isodoublets only as
in thequark model, effects of the parton mass shift
cancel in the p'-m' mass difference but not in the
n-P mass difference.

In general, the Cottingham formula for the elec-
tromagnetic mass shift includes the shift due to
the electromagnetic self-energy 6M, of the field-
theoretic constituents. The contribution is for-
mally logarithmically (quadratically) divergent for
spin- —,'(0) constituents, and thus the Cottingham
formula will be divergent for 4I&2 mass differ-
ences such as n-P as long as scaling holds. As in
the case of the leptons, higher-order electromag-
netic or weak corrections presumably render the
X-6' quark mass difference finite. Thus if the
divergent piece of the Cottingham formula can be
exactly identified with the self-mass divergences
we obtain a finite result for the total mass shift:

5Mto&'=(5M')R+(5M ) „„„,
where (5M')R is the finite mass shift obtained from
renormalizing the Cottingham formula via a sub-
traction term of the form (C4) with (5M'), given
by the standard quantum-electrodynamics (QED)
spin- —, or spin-0 result (covariant regularization
in the photon mass is assumed), and (5M')„„t,„ is
the shift in mass due to the physical finite mass
shifts of the constituents, and may be computed
from Eq. (C8). Thus, from this point of view, the
n-P nucleon mass differences can never be com-
puted from integrals over scaling contributions
in the Cottingham formula without knowing the
mass difference of the X-quark and 6'-quark con-
stituent. This program for renormalization and
further consequences of this point of view are
discussed in Ref. 22.

*Work supported by the U. S. Atomic Energy Commis-
sion.

)Present address: Massachusetts Institute of Technology,
Cambridge, Massachusetts.

f. Present address: Daresbury Nuclear Physics Labora-
tory, England.

~S. D. Drell and T.-M. Yan, Ann. Phys. (N.Y.) 66, 555
(1971) and references therein.

~P. V. Landshoff, J. C. Polkinghorne, and R. Short,
Nucl. Phys. B28, 225 (1971).

3S. D. Drell and T. D. Lee, Phys. Rev. D 5, 1738 (1972).
4S. J. Brodsky, F. E. Close, and J. F. Gunion, Phys.

Rev. D 5, 1384 (1972). The relation of the T& sum rule
to atomic and nuclear physics problems is also dis-
cussed in this reference. S. J. Brodsky, F. E. Close,
and J. F. Gunion, Phys. Rev. D 6, 177 (1972). This

paper gives the phenomenological implications of a
fixed singularity in the Compton amplitude.

~J. F. Gunion, S. Brodsky, and R. Blankenbecler, phys.
Lett. 39B, 649 (1972); Phys. Rev. D 8, 287 (1973).

S. Weinberg, Phys. Rev. 150, 1313 (1966).
~S. J. Brodsky and R. Roskies, Phys. Lett. 41B, 517

(1972); S. J. Brodsky, R. Roskies, and R. Suaya, Phys.
Rev. D (to be published).

R. Blankenbecler, M. L. Goldberger, S. W. MacDowell,
and S. B. Treiman, Phys. Rev. 123, 692 (1961). We
wish to thank R. Blankenbecler for discussions on
this point. A further extension of this method and the
techniques of Appendix B for the convolution of two
4-point amplitudes is given by R. Blankenbecler,
S. Brodsky, J. Gunion, and R. Savit f. phys. Rev. D (to
be published)].



3700 BRODSKY„C I.QSE, AND GUNIQN

Note that no additional subtraction terms enter. This
is because the strong interaction parton-proton ampli-
tude is assumed not to have any a = 0 fixed singulari-
ties itself. {This is the case for strong interaction
amplitudes which obey the usual nonlinear unitarity
equation. See also Ref. 5.) The subtraction term for
the Hegge piece is fixed by our convention in which the
Regge contribution vanishes at s = 0. Other definitions
are possible but do not alter the results.
Note that the spin-0 parton seagull terms actually
measure as well the magnitude of the operator Schwing-
er term. Since the distribution function of spi.n-0
partons is 2I'I (x), the magnitude of the Schwinger
term S is given by

I"I (x}dx
x

with the Regge regulation defined as in (III.28). A de-
tailed discussion of the Schwinger term is given in
D. Broadhurst, J. F. Gunion, and R. L. Jaffe, Phys.
Rev. D 8, 566 (1973).
J. Cornwall, P. Corrigan, and R. Norton, Phys. Rev.
Lett. 24, 1141 (1970); Phys. Rev. D 3, 536 (1971).
These authors derive the correct expression for T~"'

for purely spin-~- partons by assuming the Schwinger
term to be 0. As we here show, the T&' expression is
completely independent of parton spin.
T. P. Cheng and W. K. Tung, Phys. Rev. Lett. 24, 851
{1970).

3D. M. Scott, DAMPT report, 1973 (unpublished).
~4R. Blankenbecler, S. Brodsky, and J. Gunion (in prep-

aration) .
~5P. V. Landshoff and J. C. Polkinghorne, Phys. Rev.

D 5, 2050 (1972).
~~M. Bander, Phys. Rev. D 5, 3274 (1972).
~VY. Frishman, in Proceedings of the XVI International

Conference on High Energy Physics, Chzcago-Bataeia,
Ill. , 1972, edited by J. D. Jackson and A. Roberts
(NAL, Batavia, Ill. , 1973), Vol. 4, p. 119. See also
K. Wilson, in Proceedings of the 1971 International
SymPosium on Electron and Photon Interactions at

High Energies, edited by N. B. Mistry (Laboratory of
Nuclear Studies, Cornell University, Ithaca, N. Y. ,
1972), p. 115,

~8R. P. Hughes and H. Osborn, Nucl. Phys. B54, 603
{1973). These authors also consider the spin-depen-
dent structure-function fixed poles discussed in Ap-
pendix A.
See Ref. 5 for a complete discussion. The size of the
fixed pole in on-shell Compton scattering assuming
the absence of this last complication has been estimated
ln the c'-' e oi proton targets '3y M. I'aA:..ash~=', k. and
Gilman, Phys. Rev. D 1, 1319 (1970); C. A. Dominguez,
C. Ferro Fontan, and R. Suaya, Phys. Lett. 31B,. 365
(1970). For neutron targets, the analysis has been per-
formed by C. A. Dominguez, J. F. Gunion, and
R. Suaya [Phys. Rev. D 6, 1404 (1972)j and for deuteron
targetsby J. F. Gunion and R. Suaya [ibid. 8, 156 (].973)].

~OK. Johnson, Phys. Rev. D 6, 1101 (1972); S. D. Drell
and K. Johnson, zMd. 6, 3248 (1972).

2~D. Broadhurst, J. F. Gunion, and R. J. Jaffe (in prep-
arati. on) discuss further sum rules and their conse-

quencess,

which may be gleaned from the fbced-pole proper-
ties given in this Appendix or proved more directly by
using parton-model techniques.

22J F Gunion Phys Rev D 8 517 (1973)
We wish to thank Dr. M. Schmidt for suggesting to us
the use of explicitk 2 integration to connect the infinite
momentum and covariant approaches. See M. Schmidt
(unpublished). The method used here is closely re-
lated to the Sudakov variable analysis of LPS, Ref.
2, and the method of S. Chang and S. Ma, Phys, Rev,
180, 1506 (1969); 188, 2385 (1969). See also Ref. 7
and T. M. Yan, Phys. Rev. D 7, 1780 (1973}and refer-
ences cited therein.
M. Weisberger, Phys. Rev. D 5, 2600 (1972).

5R. L. JaffeandC. H. Llewellyn Smith, Phys. Rev. D r,

2506 (1973},have also considered the problem of mass
shifts in scaling models and have derived similar ex-
pressions. They assume the fixed-pole properties
proved for parton models in this paper.


